คำนวณ ชี้แจง ถัว เฉลี่ยเคลื่อนที่
ให้เวลาแบบ xi ฉันต้องการคำนวณค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักโดยมีหน้าต่างเฉลี่ยของจุด N ซึ่งค่าน้ำหนักจะให้ค่าล่าสุดมากกว่าค่าที่เก่ากว่า ในการเลือกน้ำหนักฉันใช้ความจริงที่คุ้นเคยว่าชุดข้อมูลทางเรขาคณิตมาบรรจบกันที่ 1 นั่นคือ sum (frac) k โดยให้คำศัพท์หลายคำมากมาย เพื่อให้ได้จำนวนน้ำหนักโดยสิ้นเชิงที่รวมกันเป็นอันหนึ่งอันเดียวกันฉันเพียงแค่ใช้คำศัพท์ N คำแรกของชุดข้อมูลทางเรขาคณิต (frac) k และทำให้เป็นปกติตามผลรวมของพวกเขา เมื่อยกตัวอย่างเช่น N4 จะให้ค่าน้ำหนักที่ไม่เป็นปกติซึ่งหลังจาก normalizing โดยผลรวมของพวกเขาแล้วค่าเฉลี่ยเคลื่อนที่จะเป็นผลรวมของผลิตภัณฑ์ของค่าล่าสุด 4 ค่าต่อน้ำหนักที่เป็นปกติเหล่านี้ วิธีนี้ generalises ในทางที่เห็นได้ชัดในการย้ายหน้าต่างของความยาว N และดูเหมือนว่าคอมพิวเตอร์คำนวณได้ง่ายเช่นกัน มีเหตุผลใดที่จะไม่ใช้วิธีง่ายๆในการคำนวณค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักโดยใช้น้ำหนักเชิงเส้นที่ฉันถามเนื่องจากรายการวิกิพีเดียสำหรับ EWMA ดูเหมือนจะซับซ้อนมากขึ้น ซึ่งทำให้ฉันสงสัยว่าคำนิยาม EWMA ของตำราอาจมีคุณสมบัติทางสถิติบางอย่างที่คำจำกัดความข้างต้นไม่ได้หรือว่าจริงแล้วพวกเขาถามว่า 28 พฤศจิกายนที่ 23:53 เริ่มต้นด้วยสมมติว่า 1) ไม่มีค่าผิดปกติ และไม่มีการเปลี่ยนแปลงระดับและไม่มีเวลาและไม่มี Dummies ตามฤดูกาล 2) ว่าค่าเฉลี่ยถ่วงน้ำหนักที่เหมาะสมที่สุดมีน้ำหนักที่ตกอยู่บนเส้นโค้งเรียบที่สามารถอธิบายได้โดย 1 ค่าสัมประสิทธิ์ 3) ที่ค่าความแปรปรวนผิดพลาดเป็นค่าคงที่ไม่มีชุดสาเหตุที่เป็นที่รู้จักเพราะเหตุใดทั้งหมด สมมติฐาน ndash เมื่อวันพุธที่ 14 ตุลาคมเวลา 21:18 น. ราวี: ในตัวอย่างที่กำหนดผลรวมของคำสี่คำแรกคือ 0.9375 0.06250.1250.250.5 ดังนั้นสี่ข้อแรกมี 93.8 ของน้ำหนักทั้งหมด (6.2 อยู่ในหางที่ตัดทอน) ใช้ค่านี้เพื่อหาน้ำหนักมาตรฐานที่รวมกันเป็นหนึ่งเดียวโดยการปรับขนาดใหม่ (หาร) โดย 0.9375 ให้ 0.06667, 0.1333, 0.2667, 0.5333 ndash Assad Ebrahim 1 ต. ค. 14 เวลา 22:21 น. Ive พบว่าการคำนวณค่าเฉลี่ยที่ใช้ถ่วงน้ำหนักที่ถ่วงน้ำหนักโดยใช้เส้นทแยงมุมแบบ overline alpha (x - overline), alphalt1 เป็นวิธีง่ายๆเพียงบรรทัดเดียวซึ่งง่ายเพียงประมาณประมาณ จำนวนตัวอย่างที่มีประสิทธิภาพ Nalpha (เปรียบเทียบรูปแบบนี้กับรูปแบบการคำนวณค่าเฉลี่ยในการทำงาน) ต้องการเพียงค่าปัจจุบัน (และค่าเฉลี่ยปัจจุบัน) และมีเสถียรภาพตามตัวเลข ในทางเทคนิควิธีนี้จะนำประวัติศาสตร์ทั้งหมดเข้าสู่ค่าเฉลี่ย ข้อดีหลักสองข้อในการใช้หน้าต่างแบบเต็ม (ในทางตรงกันข้ามกับการตัดทอนที่กล่าวถึงในคำถาม) คือในบางกรณีสามารถช่วยในการวิเคราะห์ลักษณะการกรองได้ง่ายและลดความผันผวนที่เกิดขึ้นหากข้อมูลขนาดใหญ่ (หรือเล็ก) value เป็นส่วนหนึ่งของชุดข้อมูล ตัวอย่างเช่นพิจารณาผลการกรองหากข้อมูลมีค่าเป็นศูนย์ยกเว้นหนึ่งค่าที่มีค่าเป็น 106 ตอบเมื่อ 29 พฤศจิกายนที่ 0: 33 คำนวณความสัมพันธ์ระหว่าง EWMA โดยใช้ Excel เราได้เรียนรู้เกี่ยวกับวิธีการประเมินความผันผวนโดยใช้ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบ EWMA ดังที่เราทราบ EWMA หลีกเลี่ยงข้อผิดพลาดของค่าเฉลี่ยที่ถ่วงน้ำหนักอย่างเท่าเทียมกันเนื่องจากให้น้ำหนักมากกว่าข้อสังเกตล่าสุดเมื่อเทียบกับข้อสังเกตที่เก่ากว่า ดังนั้นถ้าเรามีผลตอบแทนที่มากในข้อมูลของเราเมื่อเวลาผ่านไปข้อมูลเหล่านี้จะแก่กว่าและมีน้ำหนักน้อยกว่าในการคำนวณของเรา ในบทความนี้เราจะดูว่าเราสามารถคำนวณความสัมพันธ์โดยใช้ EWMA ใน Excel ได้อย่างไร เรารู้ว่าความสัมพันธ์ถูกคำนวณโดยใช้สูตรต่อไปนี้: ขั้นตอนแรกคือการคำนวณความแปรปรวนร่วมระหว่างชุดการส่งคืนสองชุด เราใช้ตัวปรับความเรียบ Lambda 0.94 ตามที่ใช้ใน RiskMetrics พิจารณาสมการต่อไปนี้: เราใช้ผลตอบแทนเป็น 2 เท่าของ x ในสมการนี้สำหรับการพยากรณ์ความแปรปรวนและผลคูณของสองผลตอบแทนเป็นชุด x ในสมการสำหรับการพยากรณ์ความแปรปรวนร่วม โปรดสังเกตว่าแลมบ์ดาเดียวกันใช้สำหรับความแปรปรวนและความแปรปรวนร่วมทั้งหมด ขั้นตอนที่สองคือการคำนวณความแปรปรวนและส่วนเบี่ยงเบนมาตรฐานของชุดการส่งคืนแต่ละรายการตามที่อธิบายไว้ในบทความนี้คำนวณความผันผวนทางประวัติศาสตร์โดยใช้ EWMA ขั้นตอนที่สามคือการคำนวณความสัมพันธ์โดยการเสียบค่าความแปรปรวนและความเบี่ยงเบนมาตรฐานในสูตรที่กำหนดข้างต้นสำหรับความสัมพันธ์ แผ่นงาน Excel ต่อไปนี้เป็นตัวอย่างของการคำนวณความสัมพันธ์และความผันผวนของ Excel การคำนวณค่าเฉลี่ยถ่วงน้ำหนักใน Excel โดยใช้การคำนวณข้อมูล Excel อย่างราบรื่นการวิเคราะห์ข้อมูล Excel สำหรับ Dummies, Edition ครั้งที่ 2 เครื่องมือ Exponential Smoothing ใน Excel คำนวณค่าเฉลี่ยเคลื่อนที่ อย่างไรก็ตามการคำนวณความถ่วงน้ำหนักแบบเลขยกกำลังให้ค่าที่รวมอยู่ในการคำนวณค่าเฉลี่ยเคลื่อนที่เพื่อให้ค่าล่าสุดมีผลมากขึ้นกับการคำนวณโดยเฉลี่ยและค่าเดิมมีผลน้อยกว่า การถ่วงน้ำหนักนี้ทำได้ผ่านค่าคงที่ที่ราบเรียบ เพื่อแสดงให้เห็นว่าเครื่องมือ Smoothing แบบ Exponential ทำงานอย่างไรสมมติว่า you8217re อีกครั้งกำลังมองหาข้อมูลอุณหภูมิเฉลี่ยรายวัน เมื่อต้องการคำนวณค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักโดยใช้การคำนวณหากำไรให้เรียบโปรดทำตามขั้นตอนต่อไปนี้: เมื่อต้องการคำนวณค่าเฉลี่ยเคลื่อนที่ที่ได้รับการทำความสะอาดอย่างต่อเนื่องให้คลิกที่ปุ่มคำสั่ง Data analysis ของข้อมูล tab8217s เมื่อ Excel แสดงไดอะล็อกบ็อกซ์การวิเคราะห์ข้อมูลเลือกรายการ Smoning แบบ Exponential จากรายการจากนั้นคลิก OK Excel จะแสดงไดอะล็อกบ็อกซ์ Exponential Smoothing ระบุข้อมูล หากต้องการระบุข้อมูลที่คุณต้องการคำนวณค่าเฉลี่ยเคลื่อนที่แบบเคลื่อนไหวที่ชี้แจงให้คลิกที่กล่องข้อความ Input Range จากนั้นระบุช่วงการป้อนข้อมูลโดยพิมพ์ที่อยู่ช่วงเวิร์กชีทหรือเลือกช่วงของแผ่นงาน หากช่วงอินพุทของคุณมีป้ายข้อความเพื่อระบุหรืออธิบายข้อมูลของคุณให้เลือกช่องทำเครื่องหมายป้ายข้อความ ให้ค่าคงที่ที่ราบเรียบ ป้อนค่าคงที่ที่ราบเรียบในกล่องข้อความ Damping Factor แฟ้มวิธีใช้ Excel แสดงว่าคุณใช้ค่าคงที่ที่ราบเรียบระหว่าง 0.2 และ 0.3 สันนิษฐานได้ว่าอย่างไรก็ตามหาก you8217 ใช้เครื่องมือนี้คุณมีความคิดของคุณเองเกี่ยวกับค่าคงที่ของการทำให้เรียบที่ถูกต้องคือ (หากคุณไม่เข้าใจเกี่ยวกับค่าคงที่ที่ราบเรียบบางทีคุณอาจไม่ควรใช้เครื่องมือนี้) บอก Excel ว่าจะใส่ข้อมูลค่าเฉลี่ยเคลื่อนที่แบบเรียบ ใช้กรอบข้อความ Output Range เพื่อระบุช่วงเวิร์กชีตที่คุณต้องการวางข้อมูลค่าเฉลี่ยเคลื่อนที่ ตัวอย่างเช่นในตัวอย่างแผ่นงานคุณวางข้อมูลค่าเฉลี่ยเคลื่อนที่ลงในช่วงเวิร์กชีท B2: B10 (ไม่บังคับ) แสดงข้อมูลที่เรียบขึ้น เมื่อต้องการแผนภูมิข้อมูลที่ได้รับการจัดเรียงอย่างรวดเร็วให้เลือกช่องทำเครื่องหมายแผนภูมิเอาท์พุท (ไม่บังคับ) ระบุว่าคุณต้องการคำนวณข้อมูลข้อผิดพลาดมาตรฐาน หากต้องการคำนวณข้อผิดพลาดมาตรฐานให้เลือกช่องทำเครื่องหมายข้อผิดพลาดมาตรฐาน Excel วางค่าความผิดพลาดมาตรฐานไว้ข้างๆค่าเฉลี่ยเคลื่อนที่แบบเรียบ หลังจากที่คุณระบุว่าต้องการย้ายข้อมูลเฉลี่ยที่ต้องการและตำแหน่งที่ต้องการวางไว้คลิกตกลง Excel คำนวณค่าเฉลี่ยเคลื่อนที่โดยการคำนวณค่าเฉลี่ยและการแสดงออกของเลขแจงเป็นขั้นตอนแรกในการย้ายเกินกว่าโมเดลเฉลี่ยโมเดลการเดินแบบสุ่มและแบบจำลองเชิงเส้นแนวโน้มและรูปแบบที่ไม่เป็นทางการสามารถคาดการณ์ได้โดยใช้แบบจำลองที่เคลื่อนที่โดยเฉลี่ยหรือเรียบ สมมติฐานพื้นฐานที่อยู่เบื้องหลังรูปแบบเฉลี่ยและราบเรียบคือชุดเวลาเป็นแบบคงที่ในท้องถิ่นที่มีค่าเฉลี่ยที่เปลี่ยนแปลงไปอย่างช้าๆ ดังนั้นเราจึงใช้ค่าเฉลี่ยเคลื่อนที่ (ท้องถิ่น) เพื่อประมาณค่าปัจจุบันของค่าเฉลี่ยและใช้เป็นค่าพยากรณ์สำหรับอนาคตอันใกล้นี้ ซึ่งถือได้ว่าเป็นการประนีประนอมระหว่างโมเดลเฉลี่ยและแบบสุ่มโดยไม่มีการเลื่อนลอย กลยุทธ์เดียวกันสามารถใช้ในการประมาณและคาดการณ์แนวโน้มในท้องถิ่น ค่าเฉลี่ยเคลื่อนที่มักถูกเรียกว่า quotsmoothedquot version ของชุดเดิมเนื่องจากค่าเฉลี่ยในระยะสั้นมีผลต่อการทำให้เรียบออกกระแทกในชุดเดิม โดยการปรับระดับการทำให้เรียบ (ความกว้างของค่าเฉลี่ยเคลื่อนที่) เราสามารถคาดหวังให้เกิดความสมดุลระหว่างประสิทธิภาพของโมเดลแบบเฉลี่ยและแบบสุ่ม รูปแบบเฉลี่ยที่ง่ายที่สุดคือ ค่าเฉลี่ยของค่าเฉลี่ยของ Y ที่เวลา t1 ที่ทำในเวลา t เท่ากับค่าเฉลี่ยที่แท้จริงของการสังเกตการณ์ m ล่าสุด: (ที่นี่และที่อื่น ๆ ฉันจะใช้สัญลักษณ์ 8220Y-hat8221 เพื่อยืน สำหรับการคาดการณ์ของชุดข้อมูล Y เวลาที่เร็วที่สุดเท่าที่เป็นไปได้ก่อนวันที่โดยรูปแบบที่กำหนด) ค่าเฉลี่ยนี้เป็นศูนย์กลางในระยะเวลา t - (m1) 2 ซึ่งหมายความว่าค่าประมาณของท้องถิ่นจะมีแนวโน้มลดลงหลังค่าจริง ค่าเฉลี่ยของท้องถิ่นโดยประมาณ (m1) 2 ช่วงเวลา ดังนั้นเราจึงกล่าวว่าอายุโดยเฉลี่ยของข้อมูลในค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายคือ (m1) 2 เทียบกับช่วงเวลาที่คาดการณ์การคำนวณ: นี่คือระยะเวลาโดยที่การคาดการณ์จะมีแนวโน้มลดลงหลังจุดหักเหในข้อมูล . ตัวอย่างเช่นถ้าคุณคิดค่าเฉลี่ย 5 ค่าล่าสุดการคาดการณ์จะประมาณ 3 ช่วงเวลาในการตอบสนองต่อจุดหักเห โปรดทราบว่าถ้า m1 โมเดลเฉลี่ยเคลื่อนที่โดยเฉลี่ย (SMA) เทียบเท่ากับรูปแบบการเดินแบบสุ่ม (โดยไม่มีการเติบโต) ถ้า m มีขนาดใหญ่มาก (เทียบกับความยาวของระยะเวลาประมาณ) รูปแบบ SMA จะเท่ากับรูปแบบเฉลี่ย เช่นเดียวกับพารามิเตอร์ใด ๆ ของรูปแบบการคาดการณ์การปรับค่าของ k จะเป็นเรื่องปกติที่จะได้รับข้อมูลที่ดีที่สุดนั่นคือข้อผิดพลาดในการคาดการณ์ที่เล็กที่สุดโดยเฉลี่ย นี่คือตัวอย่างของชุดที่ดูเหมือนจะแสดงความผันผวนแบบสุ่มรอบ ๆ ค่าเฉลี่ยที่เปลี่ยนแปลงไปอย่างช้าๆ อันดับแรกให้ลองพอดีกับรูปแบบการเดินแบบสุ่มซึ่งเท่ากับค่าเฉลี่ยเคลื่อนที่ที่สั้น ๆ ของ 1 เทอม: รูปแบบการเดินแบบสุ่มตอบสนองได้อย่างรวดเร็วต่อการเปลี่ยนแปลงในซีรีส์ แต่ในการทำเช่นนี้จะทำให้ได้คำที่ไม่เหมาะสมใน ข้อมูล (ความผันผวนแบบสุ่ม) รวมทั้ง quotsignalquot (ค่าเฉลี่ยในท้องถิ่น) หากเราลองใช้ค่าเฉลี่ยเคลื่อนที่ 5 ข้อโดยทั่วไปเราจะได้รับการคาดการณ์ที่นุ่มนวลกว่า: ค่าเฉลี่ยเคลื่อนที่ 5 เทอมให้ผลผิดพลาดอย่างมีนัยสำคัญน้อยกว่ารูปแบบการเดินแบบสุ่มในกรณีนี้ อายุเฉลี่ยของข้อมูลในการคาดการณ์นี้คือ 3 ((51) 2) ดังนั้นจึงมีแนวโน้มที่จะล่าช้ากว่าจุดหักเหภายในสามช่วงเวลา (ตัวอย่างเช่นการชะลอตัวน่าจะเกิดขึ้นในช่วง 21 แต่การคาดการณ์ไม่ได้ผกผันไปหลายช่วงเวลาภายหลัง) สังเกตว่าการคาดการณ์ระยะยาวจากแบบจำลอง SMA เป็นแนวเส้นตรงเช่นเดียวกับการเดินแบบสุ่ม แบบ ดังนั้นรูปแบบ SMA สมมติว่าไม่มีแนวโน้มในข้อมูล อย่างไรก็ตามในขณะที่การคาดการณ์จากรูปแบบการเดินแบบสุ่มมีค่าเท่ากับค่าที่สังเกตได้ล่าสุดการคาดการณ์จากรูปแบบ SMA จะเท่ากับค่าเฉลี่ยถ่วงน้ำหนักของค่าล่าสุด วงเงินความเชื่อมั่นที่คำนวณโดย Statgraphics สำหรับการคาดการณ์ในระยะยาวของค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายจะไม่ได้รับมากขึ้นเนื่องจากระยะขอบพยากรณ์อากาศเพิ่มขึ้น เห็นได้ชัดว่าไม่ถูกต้อง แต่น่าเสียดายที่ไม่มีทฤษฎีทางสถิติพื้นฐานที่บอกเราว่าช่วงความเชื่อมั่นควรจะเพิ่มขึ้นสำหรับรุ่นนี้อย่างไร อย่างไรก็ตามไม่ยากที่จะคำนวณค่าประมาณเชิงประจักษ์ถึงขีดจำกัดความเชื่อมั่นสำหรับการคาดการณ์ระยะยาวของเส้นขอบฟ้า ตัวอย่างเช่นคุณสามารถตั้งค่าสเปรดชีตที่จะใช้โมเดล SMA เพื่อคาดการณ์ล่วงหน้า 2 ขั้นตอนล่วงหน้า 3 ก้าวเป็นต้นภายในตัวอย่างข้อมูลที่ผ่านมา จากนั้นคุณสามารถคำนวณส่วนเบี่ยงเบนมาตรฐานตัวอย่างของข้อผิดพลาดในขอบฟ้าพยากรณ์แต่ละครั้งและสร้างช่วงความเชื่อมั่นสำหรับการคาดการณ์ในระยะยาวโดยการเพิ่มและลบคูณของส่วนเบี่ยงเบนมาตรฐานที่เหมาะสม ถ้าเราลองค่าเฉลี่ยเคลื่อนที่ 9 วันเราจะได้รับการคาดการณ์ที่ราบรื่นขึ้นและผลกระทบที่ปกคลุมด้วยวัตถุฉนวน: อายุเฉลี่ยอยู่ที่ 5 ช่วงเวลา ((91) 2) ถ้าเราใช้ค่าเฉลี่ยเคลื่อนที่ในระยะ 19 วันอายุเฉลี่ยจะเพิ่มขึ้นเป็น 10: สังเกตว่าแท้จริงแล้วการคาดการณ์ในขณะนี้ล้าหลังจุดหักเหประมาณ 10 รอบ นี่คือตารางที่เปรียบเทียบสถิติข้อผิดพลาดของพวกเขาซึ่งรวมถึงค่าเฉลี่ยระยะยาว 3 คำ: Model C ซึ่งเป็นค่าเฉลี่ยเคลื่อนที่ 5 เทอมให้ผลตอบแทนน้อยที่สุดของ RMSE โดยมีขอบเล็กกว่า 3 ค่าเฉลี่ยระยะสั้นและระยะ 9 และสถิติอื่น ๆ ของพวกเขาเกือบจะเท่ากัน ดังนั้นระหว่างโมเดลที่มีสถิติข้อผิดพลาดที่คล้ายกันมากเราสามารถเลือกได้ว่าจะต้องการการตอบสนองเล็กน้อยหรือความเรียบขึ้นเล็กน้อยในการคาดการณ์หรือไม่ (ค่าเฉลี่ยถ่วงน้ำหนักที่ชี้แจง) แบบจำลองค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายที่กล่าวมาข้างต้นมีคุณสมบัติที่ไม่พึงประสงค์ที่จะถือว่าข้อสังเกตสุดท้ายของ k อย่างเท่าเทียมกันและสมบูรณ์ละเว้นการสังเกตทั้งหมดก่อนหน้านี้ โดยนัยข้อมูลที่ผ่านมาควรจะลดในรูปแบบที่ค่อยๆมากขึ้นตัวอย่างเช่นข้อสังเกตล่าสุดควรมีน้ำหนักมากกว่า 2 ครั้งล่าสุดและครั้งที่ 2 ล่าสุดควรมีน้ำหนักน้อยกว่า 3 ครั้งล่าสุดและ อื่น ๆ แบบเรียบง่าย (SES) ทำให้สำเร็จได้ ให้ 945 แสดงถึงค่าคงที่ quotsmoothing (ตัวเลขระหว่าง 0 ถึง 1) วิธีหนึ่งในการเขียนแบบจำลองคือการกำหนดชุด L ซึ่งแสดงถึงระดับปัจจุบัน (นั่นคือค่าเฉลี่ยในท้องถิ่น) ของชุดข้อมูลดังกล่าวโดยประมาณจากข้อมูลจนถึงปัจจุบัน ค่าของ L ในเวลา t คำนวณจากค่าก่อนหน้าของตัวเองเช่นนี้ดังนั้นค่าที่เรียบนวลในปัจจุบันเป็นค่า interpolation ระหว่างค่าที่ได้จากการเรียบก่อนหน้าและการสังเกตการณ์ในปัจจุบันโดยที่ 945 ควบคุมความใกล้ชิดของค่าที่ถูก interpolation ไปเป็นค่าล่าสุด การสังเกต การคาดการณ์ในช่วงถัดไปเป็นเพียงค่าที่ได้รับการปรับปรุงแล้วในปัจจุบัน: เราสามารถแสดงการคาดการณ์ครั้งต่อไปได้โดยตรงในแง่ของการคาดการณ์ก่อนหน้าและข้อสังเกตก่อนหน้าในเวอร์ชันที่เทียบเท่ากันต่อไปนี้ ในรุ่นแรกการคาดการณ์คือการแก้ไขระหว่างการคาดการณ์ก่อนหน้าและการสังเกตก่อนหน้านี้: ในรุ่นที่สองการคาดการณ์ครั้งต่อไปจะได้รับโดยการปรับการคาดการณ์ก่อนหน้านี้ในทิศทางของข้อผิดพลาดก่อนหน้าด้วยจำนวนเศษ 945 ข้อผิดพลาดเกิดขึ้นที่ เวลา t ในรุ่นที่สามการคาดการณ์คือค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบยกระดับ (เช่นลด) โดยมีปัจจัยการลดราคา 1-945: รูปแบบการแก้ไขของสูตรพยากรณ์เป็นวิธีที่ง่ายที่สุดในการใช้งานหากคุณใช้โมเดลในสเปรดชีต: เหมาะกับรูปแบบ เซลล์เดี่ยวและมีการอ้างอิงเซลล์ชี้ไปที่การคาดการณ์ก่อนหน้านี้การสังเกตก่อนหน้าและเซลล์ที่เก็บค่า 945 ไว้ โปรดทราบว่าถ้า 945 1 รูปแบบ SES จะเทียบเท่ากับรูปแบบการเดินแบบสุ่ม (โดยไม่มีการเจริญเติบโต) ถ้า 945 0 รูปแบบ SES จะเท่ากับโมเดลเฉลี่ยโดยสมมติว่าค่าที่เรียบเป็นครั้งแรกจะเท่ากับค่าเฉลี่ย (กลับไปด้านบนสุดของหน้า) อายุโดยเฉลี่ยของข้อมูลในการคาดการณ์การเรียบอย่างง่ายและชี้แจงคือ 1 945 เทียบกับระยะเวลาที่คาดการณ์การคำนวณ (นี้ไม่ควรจะเป็นที่เห็นได้ชัด แต่ก็สามารถแสดงได้โดยการประเมินชุดอนันต์.) ดังนั้นการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายมีแนวโน้มที่จะล่าช้าหลังจุดหักเหประมาณ 1 945 รอบระยะเวลา ตัวอย่างเช่นเมื่อ 945 0.5 ความล่าช้าเป็น 2 ช่วงเวลาเมื่อ 945 0.2 ความล่าช้าเป็น 5 ช่วงเวลาที่ 945 0.1 ความล่าช้าเป็น 10 ช่วงเวลาและอื่น ๆ สำหรับอายุเฉลี่ยที่กำหนด (เช่นจำนวนเงินที่ล่าช้า) การคาดการณ์การทำให้การทำให้ลื่นตามการอธิบายแบบเสวนาง่าย ๆ (SES) ค่อนข้างดีกว่าการคาดการณ์ค่าเฉลี่ยเคลื่อนที่อย่างง่าย (SMA) เนื่องจากมีน้ำหนักมากขึ้นในการสังเกตล่าสุด - คือ มีการเปลี่ยนแปลงมากขึ้นในช่วงไม่กี่ปีที่ผ่านมา ตัวอย่างเช่นโมเดล SMA ที่มี 9 คำและแบบ SES ที่มี 945 0.2 มีอายุเฉลี่ยอยู่ที่ 5 สำหรับข้อมูลในการคาดการณ์ แต่แบบจำลอง SES จะให้น้ำหนักมากกว่า 3 ค่าที่มากกว่าแบบจำลอง SMA และที่ ในเวลาเดียวกันมันไม่ได้ 8220forget8221 เกี่ยวกับค่ามากกว่า 9 งวดเก่าดังที่แสดงในแผนภูมินี้ข้อได้เปรียบที่สำคัญอีกประการหนึ่งของโมเดล SES ในรูปแบบ SMA คือรูปแบบ SES ใช้พารามิเตอร์การปรับให้ราบเรียบซึ่งเป็นตัวแปรที่เปลี่ยนแปลงได้อย่างต่อเนื่อง โดยใช้อัลกอริธึม quotsolverquot เพื่อลดข้อผิดพลาดกำลังสองเฉลี่ย ค่าที่เหมาะสมที่สุดของ 945 ในแบบจำลอง SES สำหรับชุดข้อมูลนี้จะเท่ากับ 0.2961 ดังแสดงในที่นี้อายุเฉลี่ยของข้อมูลในการคาดการณ์นี้คือ 10.2961 3.4 งวดซึ่งใกล้เคียงกับค่าเฉลี่ยเคลื่อนที่ 6-term ระยะสั้น การคาดการณ์ระยะยาวจากแบบจำลอง SES เป็นแนวเส้นตรง เช่นเดียวกับในรูปแบบ SMA และรูปแบบการเดินแบบสุ่มโดยไม่มีการเติบโต อย่างไรก็ตามโปรดทราบว่าช่วงความเชื่อมั่นที่คำนวณโดย Statgraphics จะแตกต่างกันไปในรูปแบบที่ดูสมเหตุสมผลและมีความแคบกว่าช่วงความเชื่อมั่นสำหรับรูปแบบการเดินแบบสุ่ม แบบจำลอง SES อนุมานว่าชุดนี้ค่อนข้างจะคาดเดาได้มากกว่าแบบจำลองการเดินแบบสุ่ม แบบจำลอง SES เป็นกรณีพิเศษของรูปแบบ ARIMA ดังนั้นทฤษฎีทางสถิติของแบบจำลอง ARIMA จึงเป็นพื้นฐานที่ใช้ในการคำนวณช่วงความเชื่อมั่นสำหรับแบบจำลอง SES โดยเฉพาะอย่างยิ่งแบบจำลอง SES คือแบบจำลอง ARIMA ที่มีความแตกต่างอย่างไม่มีความแตกต่างอย่างหนึ่งข้อ MA (1) เทอมและไม่มีระยะคงที่ หรือที่เรียกว่าโควต้า (0,1,1) โดยไม่มีค่าคงที่ ค่าสัมประสิทธิ์ MA (1) ในรูปแบบ ARIMA สอดคล้องกับจำนวน 1-945 ในแบบจำลอง SES ตัวอย่างเช่นถ้าคุณพอดีกับรูปแบบ ARIMA (0,1,1) โดยไม่มีค่าคงที่สำหรับชุดข้อมูลที่วิเคราะห์ที่นี่ค่าสัมประสิทธิ์ MA (1) โดยประมาณจะเท่ากับ 0.7029 ซึ่งใกล้เคียงกับค่า 0.2961 เป็นไปได้ที่จะเพิ่มสมมติฐานของแนวโน้มเชิงเส้นที่ไม่ใช่ศูนย์เป็นแบบ SES ในการทำเช่นนี้เพียงแค่ระบุรูปแบบ ARIMA ที่มีความแตกต่างอย่างไม่มีความแตกต่างอย่างหนึ่งและเทอม MA (1) ที่มีค่าคงที่นั่นคือ ARIMA (0,1,1) โดยมีค่าคงที่ การคาดการณ์ในระยะยาวจะมีแนวโน้มที่เท่ากับแนวโน้มเฉลี่ยที่สังเกตได้ในช่วงประมาณทั้งหมด คุณไม่สามารถดำเนินการนี้ควบคู่กับการปรับฤดูกาลได้เนื่องจากตัวเลือกการปรับฤดูกาลจะถูกปิดใช้งานเมื่อตั้งค่าประเภทของรูปแบบเป็น ARIMA อย่างไรก็ตามคุณสามารถเพิ่มแนวโน้มการชี้แจงในระยะยาวที่คงที่สำหรับแบบจำลองการทำให้เรียบแบบเลขแจงที่เรียบง่าย (โดยมีหรือไม่มีการปรับฤดูกาล) โดยใช้ตัวเลือกการปรับค่าเงินเฟ้อในขั้นตอนการคาดการณ์ อัตราการเติบโตของอัตราการเติบโตของเงินเฟ้อ (quotation) ในแต่ละช่วงเวลาสามารถประมาณได้จากค่าสัมประสิทธิ์ความชันในรูปแบบเส้นตรงที่พอดีกับข้อมูลร่วมกับการแปลงลอการิทึมตามธรรมชาติหรืออาจเป็นไปตามข้อมูลอื่น ๆ ที่เป็นอิสระเกี่ยวกับแนวโน้มการเติบโตในระยะยาว . (กลับมาที่ด้านบนสุดของหน้า) Browns Linear (เช่น double) Exponential Smoothing โมเดล SMA และ SES สมมุติว่าไม่มีแนวโน้มใด ๆ ในข้อมูล (โดยปกติแล้วจะเป็นอย่างน้อยหรืออย่างน้อยก็ไม่เลวสำหรับ 1- การคาดการณ์ล่วงหน้าเมื่อข้อมูลมีเสียงดังมาก) และสามารถปรับเปลี่ยนเพื่อรวมแนวโน้มเชิงเส้นคงที่ดังที่แสดงไว้ข้างต้น สิ่งที่เกี่ยวกับแนวโน้มระยะสั้นหากชุดแสดงอัตราการเติบโตที่แตกต่างกันหรือรูปแบบตามวัฏจักรที่โดดเด่นอย่างชัดเจนต่อเสียงรบกวนและหากมีความจำเป็นต้องคาดการณ์มากกว่า 1 รอบระยะเวลาล่วงหน้าการประมาณแนวโน้มในท้องถิ่นอาจเป็นไปได้ ปัญหา แบบจำลองการทำให้เรียบเรียบง่ายสามารถสรุปเพื่อให้ได้รูปแบบการเรียบแบบเสวนาเชิงเส้น (LES) ซึ่งจะคำนวณการประมาณระดับท้องถิ่นและระดับแนวโน้ม รูปแบบแนวโน้มที่แตกต่างกันตามเวลาที่ง่ายที่สุดคือสีน้ำตาลแบบเสแสร้งแบบเสียดสีแบบเรียบซึ่งใช้ทั้งสองแบบที่เรียบเนียนแตกต่างกันไปตามจุดต่าง ๆ ในเวลา สูตรพยากรณ์ขึ้นอยู่กับการอนุมานของเส้นผ่านทั้งสองศูนย์ (รุ่นที่ซับซ้อนมากขึ้นของรุ่นนี้ Holt8217s ถูกกล่าวถึงด้านล่าง) รูปแบบพีชคณิตของ Brown8217s เชิงเส้นแบบเรียบเช่นเดียวกับรูปแบบการเรียบง่ายชี้แจงสามารถแสดงในรูปแบบที่แตกต่างกัน แต่ที่เท่าเทียมกัน รูปแบบมาตรฐานของแบบจำลองนี้มักจะแสดงดังนี้: ให้ S หมายถึงชุดที่เรียบง่ายที่ได้จากการใช้การเรียบง่ายแบบเลขยกตัวอย่างให้เป็นชุด Y นั่นคือค่าของ S ในช่วง t จะได้รับโดย: (จำได้ว่าภายใต้หลักการง่ายๆ exponential smoothing นี่คือการคาดการณ์ของ Y ในช่วง t1) จากนั้นให้ Squot แสดงชุดที่มีการคูณทวีคูณขึ้นโดยใช้การเรียบแบบเลขแจงธรรมดา (ใช้แบบเดียวกัน 945) กับชุด S: สุดท้ายการคาดการณ์สำหรับ Y tk สำหรับ kgt1 ใด ๆ ให้โดย: ผลตอบแทนนี้ e 1 0 (เช่นฉ้อฉลเล็กน้อยและให้การคาดการณ์ครั้งแรกเท่ากับการสังเกตครั้งแรกจริง) และ e 2 Y 2 8211 Y 1 หลังจากที่คาดการณ์จะถูกสร้างโดยใช้สมการข้างต้น ค่านี้จะให้ค่าพอดีกับสูตรตาม S และ S ถ้าค่าเริ่มต้นใช้ S 1 S 1 Y 1 รุ่นของรุ่นนี้ใช้ในหน้าถัดไปที่แสดงให้เห็นถึงการรวมกันของการเรียบแบบเสวนากับการปรับฤดูกาลตามฤดูกาล Holt8217s Linear Exponential Smoothing Brown8217s แบบจำลอง LES คำนวณการประมาณระดับท้องถิ่นและแนวโน้มโดยการให้ข้อมูลที่ราบรื่น แต่ข้อเท็จจริงที่ว่าด้วยพารามิเตอร์เรียบเพียงอย่างเดียวจะกำหนดข้อ จำกัด ของรูปแบบข้อมูลที่สามารถพอดีกับระดับและแนวโน้มได้ ไม่ได้รับอนุญาตให้เปลี่ยนแปลงในอัตราที่เป็นอิสระ แบบจำลอง LES ของ Holt8217s กล่าวถึงปัญหานี้ด้วยการรวมค่าคงที่ที่ราบเรียบสองค่าหนึ่งค่าสำหรับหนึ่งและหนึ่งสำหรับแนวโน้ม ทุกเวลา t เช่นเดียวกับในรุ่น Brown8217s มีการประมาณการ L t ของระดับท้องถิ่นและประมาณการ T t ของแนวโน้มในท้องถิ่น ที่นี่พวกเขาจะได้รับการคำนวณจากค่าของ Y ที่สังเกตได้ในเวลา t และการประมาณค่าก่อนหน้าของระดับและแนวโน้มโดยสมการสองตัวที่ใช้การอธิบายแบบเอกซ์โพเน็นเชียลให้เรียบขึ้น หากระดับและแนวโน้มโดยประมาณของเวลา t-1 คือ L t82091 และ T t-1 ตามลำดับจากนั้นคาดว่า Y tshy ที่จะทำในเวลา t-1 เท่ากับ L t-1 T t-1 เมื่อมีการสังเกตค่าจริงค่าประมาณระดับที่ปรับปรุงใหม่จะถูกคำนวณโดยการ interpolating ระหว่าง Y tshy และการคาดการณ์ L t-1 T t-1 โดยใช้น้ำหนักของ 945 และ 1-945 การเปลี่ยนแปลงระดับโดยประมาณ, คือ L t 8209 L t82091 สามารถตีความได้ว่าเป็นสัญญาณรบกวนของแนวโน้มในเวลา t การประมาณการแนวโน้มของแนวโน้มจะถูกคำนวณโดยการ interpolating ระหว่าง L t 8209 L t82091 และประมาณการก่อนหน้าของแนวโน้ม T t-1 โดยใช้น้ำหนักของ 946 และ 1-946: การตีความค่าคงที่การทรงตัวของกระแส 946 มีความคล้ายคลึงกับค่าคงที่การปรับให้เรียบระดับ 945 โมเดลที่มีค่าน้อย 946 ถือว่าแนวโน้มมีการเปลี่ยนแปลงเพียงอย่างช้าๆเมื่อเวลาผ่านไป ใหญ่กว่า 946 สมมติว่ามีการเปลี่ยนแปลงอย่างรวดเร็ว แบบจำลองที่มีขนาดใหญ่ 946 เชื่อว่าในอนาคตอันใกล้นี้มีความไม่แน่นอนมากเนื่องจากข้อผิดพลาดในการคาดการณ์แนวโน้มกลายเป็นสิ่งสำคัญมากเมื่อคาดการณ์ล่วงหน้ามากกว่าหนึ่งช่วง (กลับไปด้านบนสุดของหน้า) ค่าคงที่ที่ราบเรียบ 945 และ 946 สามารถประมาณได้ตามปกติโดยลดข้อผิดพลาดของค่าเฉลี่ยของการคาดการณ์ล่วงหน้า 1 ขั้นตอน เมื่อทำใน Statgraphics ค่าประมาณนี้จะเท่ากับ 945 0.3048 และ 946 0.008 ค่าที่น้อยมากของ 946 หมายความว่ารูปแบบสมมติว่ามีการเปลี่ยนแปลงน้อยมากในแนวโน้มจากระยะหนึ่งไปยังอีกรูปแบบหนึ่งดังนั้นโดยทั่วไปโมเดลนี้กำลังพยายามประมาณแนวโน้มในระยะยาว โดยการเปรียบเทียบกับความคิดของอายุโดยเฉลี่ยของข้อมูลที่ใช้ในการประมาณระดับท้องถิ่นของชุดข้อมูลอายุโดยเฉลี่ยของข้อมูลที่ใช้ในการประเมินแนวโน้มในท้องถิ่นเป็นสัดส่วนกับ 1 946 แม้ว่าจะไม่เท่ากันก็ตาม . ในกรณีนี้ที่กลายเป็น 10.006 125 นี่เป็นตัวเลขที่แม่นยำมากที่สุดเท่าที่ความถูกต้องของค่าประมาณ 946 isn8217t จริง ๆ 3 ตำแหน่งทศนิยม แต่มันก็เป็นเรื่องธรรมดาของขนาดตามตัวอย่างขนาด 100 ดังนั้น รุ่นนี้มีค่าเฉลี่ยมากกว่าค่อนข้างมากของประวัติศาสตร์ในการประมาณแนวโน้ม พล็อตการคาดการณ์ด้านล่างแสดงให้เห็นว่าโมเดล LES ประมาณการแนวโน้มท้องถิ่นในวงกว้างขึ้นเล็กน้อยที่ส่วนท้ายของชุดข้อมูลมากกว่าแนวโน้มที่คงที่ในแบบจำลอง SEStrend นอกจากนี้ค่าประมาณของ 945 เกือบจะเหมือนกันกับที่ได้จากการปรับรุ่น SES ที่มีหรือไม่มีแนวโน้มดังนั้นเกือบจะเป็นแบบเดียวกัน ตอนนี้ดูเหมือนว่าการคาดการณ์ที่สมเหตุสมผลสำหรับโมเดลที่ควรจะประเมินแนวโน้มในระดับท้องถิ่นดูเหมือนว่าแนวโน้มในท้องถิ่นมีแนวโน้มลดลงในตอนท้ายของชุดข้อมูลสิ่งที่เกิดขึ้นพารามิเตอร์ของรุ่นนี้ ได้รับการประเมินโดยการลดข้อผิดพลาดสี่เหลี่ยมของการคาดการณ์ล่วงหน้า 1 ขั้นตอนไม่ใช่การคาดการณ์ในระยะยาวซึ่งในกรณีนี้แนวโน้มไม่ได้สร้างความแตกต่างมากนัก หากสิ่งที่คุณกำลังมองหาคือข้อผิดพลาด 1 ขั้นตอนคุณจะไม่เห็นภาพใหญ่ของแนวโน้มในช่วง 10 หรือ 20 ครั้ง เพื่อให้โมเดลนี้สอดคล้องกับการคาดการณ์ข้อมูลลูกตาของเรามากขึ้นเราจึงสามารถปรับค่าคงที่การปรับให้เรียบตามแนวโน้มเพื่อให้ใช้พื้นฐานที่สั้นกว่าสำหรับการประมาณแนวโน้ม ตัวอย่างเช่นถ้าเราเลือกที่จะตั้งค่า 946 0.1 แล้วอายุเฉลี่ยของข้อมูลที่ใช้ในการประเมินแนวโน้มท้องถิ่นคือ 10 ช่วงเวลาซึ่งหมายความว่าเรามีค่าเฉลี่ยของแนวโน้มมากกว่าช่วงเวลา 20 ช่วงที่ผ่านมา Here8217s พล็อตการคาดการณ์มีลักษณะอย่างไรถ้าเราตั้งค่า 946 0.1 ขณะเก็บรักษา 945 0.3 นี่ดูเหมาะสมสำหรับชุดนี้แม้ว่าจะเป็นแนวโน้มที่จะคาดการณ์แนวโน้มดังกล่าวได้ไม่น้อยกว่า 10 งวดในอนาคต สิ่งที่เกี่ยวกับสถิติข้อผิดพลาดนี่คือการเปรียบเทียบรูปแบบสำหรับสองรุ่นที่แสดงข้างต้นเช่นเดียวกับสามรุ่น SES ค่าที่เหมาะสมที่สุดคือ 945 สำหรับรุ่น SES มีค่าประมาณ 0.3 แต่ผลการค้นหาที่คล้ายกัน (มีการตอบสนองน้อยหรือน้อยตามลำดับ) จะได้รับค่า 0.5 และ 0.2 (A) Holts linear exp. การให้ความนุ่มนวลด้วย alpha 0.3048 และ beta 0.008 (B) Holts linear exp. การทำให้เรียบด้วยเอ็กซ์พี 0.3 และเบต้า 0.1 (C) การเพิ่มความเรียบง่ายด้วยการอธิบายด้วย alpha 0.5 (D) การทำให้เรียบอย่างง่ายด้วยเอ็กซ์โป 0.3 (E) การเรียบง่ายด้วยเลขแจงอัลฟา 0.2 สถิติของพวกเขาใกล้เคียงกันมากดังนั้นเราจึงสามารถเลือกได้บนพื้นฐาน ข้อผิดพลาดในการคาดการณ์ล่วงหน้า 1 ขั้นตอนภายในตัวอย่างข้อมูล เราต้องกลับไปพิจารณาเรื่องอื่น ๆ ถ้าเราเชื่อมั่นว่าการคาดการณ์แนวโน้มในปัจจุบันเกี่ยวกับสิ่งที่เกิดขึ้นในช่วง 20 ปีที่ผ่านมาเป็นเรื่องที่ดีพอสมควรเราสามารถสร้างโมเดล LES ด้วย 945 0.3 และ 946 0.1 ได้ ถ้าเราต้องการที่จะไม่เชื่อเรื่องว่ามีแนวโน้มในระดับท้องถิ่นแบบใดแบบหนึ่งของ SES อาจอธิบายได้ง่ายกว่านี้และยังให้การคาดการณ์ระดับกลางของถนนต่อไปในอีก 5 หรือ 10 งวดต่อไป ชนิดของแนวโน้มการอนุมานที่ดีที่สุดคือแนวนอนหรือเส้นตรงหลักฐานเชิงประจักษ์ชี้ให้เห็นว่าหากข้อมูลได้รับการปรับแล้ว (ถ้าจำเป็น) สำหรับอัตราเงินเฟ้อแล้วก็อาจจะไม่ระมัดระวังในการคาดการณ์ระยะสั้นในเชิงเส้น แนวโน้มที่ไกลมากในอนาคต แนวโน้มที่เห็นได้ชัดในวันนี้อาจลดลงในอนาคตอันเนื่องมาจากสาเหตุที่แตกต่างกันเช่นความล้าสมัยของผลิตภัณฑ์การแข่งขันที่เพิ่มขึ้นและการชะลอตัวของวัฏจักรหรือการปรับตัวในอุตสาหกรรม ด้วยเหตุนี้การเรียบอย่างง่ายจึงมักจะทำให้ได้ตัวอย่างที่ดีกว่าที่คาดคิดไว้ได้แม้จะมีการอนุมานแนวโน้มในแนวนอน การปรับเปลี่ยนรูปแบบการลดลงของรูปแบบการเพิ่มประสิทธิภาพเชิงเส้นแบบเชิงเส้นมักใช้ในการปฏิบัติเพื่อแนะนำโน้ตของอนุรักษนิยมในการคาดการณ์แนวโน้ม โมเดล LES ที่มีแนวโน้มลดลงสามารถใช้เป็นกรณีพิเศษของรูปแบบ ARIMA โดยเฉพาะ ARIMA (1,1,2) เป็นไปได้ในการคำนวณช่วงความเชื่อมั่นรอบการคาดการณ์ในระยะยาวที่ผลิตโดยแบบจำลองการทำให้เรียบโดยพิจารณาเป็นกรณีพิเศษของรูปแบบ ARIMA ความกว้างของช่วงความเชื่อมั่นขึ้นอยู่กับ (i) ข้อผิดพลาด RMS ของโมเดล (ii) ประเภทของการปรับให้เรียบ (แบบง่ายหรือแบบเส้นตรง) (iii) ค่า (s) ของคงที่ราบเรียบ (s) และ (iv) จำนวนรอบระยะเวลาที่คุณคาดการณ์ โดยทั่วไปช่วงเวลาจะกระจายออกไปได้เร็วกว่าเมื่อ 945 มีขนาดใหญ่ขึ้นในรูปแบบ SES และแพร่กระจายได้เร็วกว่ามากเมื่อใช้เส้นตรงมากกว่าการเรียบแบบเรียบ หัวข้อนี้จะกล่าวถึงต่อไปในส่วนรูปแบบ ARIMA ของบันทึกย่อ (กลับไปที่ด้านบนของหน้า.)
Comments
Post a Comment