ชี้แจง ถัว เฉลี่ยเคลื่อนที่ ตัวอย่างเช่น


ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักที่เป็นตัวเลข (Expedential Weighted Moving Average - EWMA) เป็นสถิติสำหรับการตรวจสอบกระบวนการที่ใช้ข้อมูลโดยเฉลี่ยในลักษณะที่ให้น้ำหนักน้อยและน้อยกว่าเมื่อนำข้อมูลออกไปในเวลาต่อไป การเปรียบเทียบแผนภูมิควบคุม Shewhart และเทคนิคการควบคุม EWMA สำหรับเทคนิค Shewhart chart control การตัดสินใจเกี่ยวกับสถานะการควบคุมกระบวนการนี้ได้ตลอดเวลา (t) ขึ้นอยู่กับการวัดล่าสุดจากกระบวนการนี้และแน่นอนว่า ระดับของความเป็นเลิศของการประมาณขีด จำกัด การควบคุมจากข้อมูลทางประวัติศาสตร์ สำหรับเทคนิคการควบคุม EWMA การตัดสินใจจะขึ้นอยู่กับสถิติ EWMA ซึ่งเป็นค่าเฉลี่ยถ่วงน้ำหนักแบบทวีคูณของข้อมูลทั้งหมดรวมทั้งการวัดล่าสุด การเลือกขั้นตอนการควบคุม EWMA สามารถทำให้เกิดความรู้สึกไวต่อการล่องลอยในขั้นตอนเล็ก ๆ หรือทีละขั้นขณะที่ขั้นตอนการควบคุม Shewhart สามารถตอบสนองได้เฉพาะเมื่อจุดข้อมูลล่าสุดอยู่นอกขีด จำกัด การควบคุมเท่านั้น ความหมายของ EWMA สถิติที่คำนวณได้คือ: mbox t lambda Yt (1-lambda) mbox ,,, mbox ,,, t 1,, 2,, ldots ,, n (mbox 0) คือค่าเฉลี่ยของข้อมูลทางประวัติศาสตร์ (เป้าหมาย) (Yt) คือการสังเกตการณ์ ณ เวลา (t) (n) คือจำนวนการสังเกตการณ์ที่ต้องติดตามรวมทั้ง (mbox 0) (0 การตีความของแผนภูมิการควบคุม EWMA สีแดง จุดเป็นข้อมูลดิบที่เส้นขรุขระเป็นสถิติ EWMA เมื่อเวลาผ่านไปแผนภูมิบอกเราว่ากระบวนการนี้อยู่ในการควบคุมเพราะทั้งหมด (mbox t) อยู่ระหว่างข้อ จำกัด ของการควบคุมอย่างไรก็ตามดูเหมือนว่าจะมีแนวโน้มสูงขึ้นในช่วง 5 การคำนวณหาค่าเฉลี่ยถ่วงน้ำหนักใน Excel โดยใช้การคำนวณข้อมูล Excel อย่างราบรื่นสำหรับ Dummies รุ่นที่ 2 เครื่องมือ Excel Exponential Smoothing ใน Excel จะคำนวณค่าเฉลี่ยเคลื่อนที่อย่างไรก็ตามการคำนวณค่าเฉลี่ยที่เคลื่อนไหวให้เป็นไปอย่างมีนัยสำคัญยิ่งขึ้น มีผลต่อการคำนวณค่าเฉลี่ยและค่าเก่าจะมีผลน้อยกว่านี้การถ่วงน้ำหนักนี้ทำได้ผ่านค่าคงที่ที่ราบเรียบเพื่อแสดงให้เห็นว่าเครื่องมือ Exponential Smoothing ทำงานอย่างไรสมมติว่า you8217re looki อีกครั้ง ng ที่ข้อมูลอุณหภูมิเฉลี่ยรายวัน เมื่อต้องการคำนวณค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักโดยใช้การคำนวณหากำไรให้เรียบโปรดทำตามขั้นตอนต่อไปนี้: เมื่อต้องการคำนวณค่าเฉลี่ยเคลื่อนที่ที่ได้รับการทำความสะอาดอย่างต่อเนื่องให้คลิกที่ปุ่มคำสั่ง Data analysis ของข้อมูล tab8217s เมื่อ Excel แสดงไดอะล็อกบ็อกซ์การวิเคราะห์ข้อมูลเลือกรายการ Smoning แบบ Exponential จากรายการจากนั้นคลิก OK Excel จะแสดงไดอะล็อกบ็อกซ์ Exponential Smoothing ระบุข้อมูล หากต้องการระบุข้อมูลที่คุณต้องการคำนวณค่าเฉลี่ยเคลื่อนที่แบบเคลื่อนไหวที่ชี้แจงให้คลิกที่กล่องข้อความ Input Range จากนั้นระบุช่วงการป้อนข้อมูลโดยพิมพ์ที่อยู่ช่วงเวิร์กชีทหรือเลือกช่วงของแผ่นงาน หากช่วงอินพุทของคุณมีป้ายข้อความเพื่อระบุหรืออธิบายข้อมูลของคุณให้เลือกช่องทำเครื่องหมายป้ายข้อความ ให้ค่าคงที่ที่ราบเรียบ ป้อนค่าคงที่ที่ราบเรียบในกล่องข้อความ Damping Factor แฟ้มวิธีใช้ Excel แสดงว่าคุณใช้ค่าคงที่ที่ราบเรียบระหว่าง 0.2 และ 0.3 สันนิษฐานได้ว่าอย่างไรก็ตามหาก you8217 ใช้เครื่องมือนี้คุณมีความคิดของคุณเองเกี่ยวกับค่าคงที่ของการทำให้เรียบที่ถูกต้องคือ (หากคุณไม่เข้าใจเกี่ยวกับค่าคงที่ที่ราบเรียบบางทีคุณอาจไม่ควรใช้เครื่องมือนี้) บอก Excel ว่าจะใส่ข้อมูลค่าเฉลี่ยเคลื่อนที่แบบเรียบ ใช้กรอบข้อความ Output Range เพื่อระบุช่วงเวิร์กชีตที่คุณต้องการวางข้อมูลค่าเฉลี่ยเคลื่อนที่ ตัวอย่างเช่นในตัวอย่างแผ่นงานคุณวางข้อมูลค่าเฉลี่ยเคลื่อนที่ลงในช่วงเวิร์กชีท B2: B10 (ไม่บังคับ) แสดงข้อมูลที่เรียบขึ้น เมื่อต้องการแผนภูมิข้อมูลที่ได้รับการจัดเรียงอย่างรวดเร็วให้เลือกช่องทำเครื่องหมายแผนภูมิเอาท์พุท (ไม่บังคับ) ระบุว่าคุณต้องการคำนวณข้อมูลข้อผิดพลาดมาตรฐาน หากต้องการคำนวณข้อผิดพลาดมาตรฐานให้เลือกช่องทำเครื่องหมายข้อผิดพลาดมาตรฐาน Excel วางค่าความผิดพลาดมาตรฐานไว้ข้างๆค่าเฉลี่ยเคลื่อนที่แบบเรียบ หลังจากที่คุณระบุว่าต้องการย้ายข้อมูลเฉลี่ยที่ต้องการและตำแหน่งที่ต้องการวางไว้คลิกตกลง Excel คำนวณค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนัก: ข้อมูลพื้นฐานช่วงหลายปีที่ผ่านมาช่างเทคนิคพบปัญหาสองอย่างเกี่ยวกับค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย ปัญหาแรกอยู่ในกรอบเวลาของค่าเฉลี่ยเคลื่อนที่ (MA) นักวิเคราะห์ทางเทคนิคส่วนใหญ่เชื่อว่าการดำเนินการด้านราคา การเปิดหรือปิดราคาหุ้นไม่เพียงพอที่จะขึ้นอยู่กับการคาดการณ์อย่างถูกต้องสัญญาณซื้อหรือขายของการกระทำแบบไขว้ MAs เพื่อแก้ปัญหานี้นักวิเคราะห์จึงกำหนดน้ำหนักให้มากที่สุดกับข้อมูลราคาล่าสุดโดยใช้ค่าเฉลี่ยเคลื่อนที่แบบเรียบ (EMA) (เรียนรู้เพิ่มเติมเกี่ยวกับ Exploring Average Moved Average Weighed) ตัวอย่างเช่นใช้ MA 10 วันนักวิเคราะห์จะใช้ราคาปิดของวันที่ 10 และคูณเลขนี้เป็น 10 วันที่เก้าโดยเก้าแปดวินาที วันโดยแปดและอื่น ๆ เพื่อแรกของ MA เมื่อรวมแล้วนักวิเคราะห์จะหารตัวเลขด้วยการเพิ่มตัวคูณ ถ้าคุณเพิ่มตัวคูณของตัวอย่าง MA 10 วันจำนวนเป็น 55 ตัวบ่งชี้นี้เรียกว่าค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักเชิงเส้น (สำหรับการอ่านที่เกี่ยวข้องให้ดูที่ค่าเฉลี่ยเคลื่อนที่แบบธรรมดาทำให้แนวโน้มโดดเด่น) ช่างเทคนิคหลายคนเชื่อมั่นในค่าเฉลี่ยเคลื่อนที่แบบเรียบ (exponentially smoothed moving average - EMA) ตัวบ่งชี้นี้ได้รับการอธิบายด้วยวิธีต่างๆมากมายที่ทำให้นักเรียนและนักลงทุนสับสน บางทีคำอธิบายที่ดีที่สุดมาจาก John J. Murphys การวิเคราะห์ทางเทคนิคของตลาดการเงิน (เผยแพร่โดย New York Institute of Finance, 1999): ค่าเฉลี่ยเคลื่อนที่แบบเรียบเรียงตามที่อธิบายถึงปัญหาทั้งสองที่เกี่ยวข้องกับค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย ประการแรกค่าเฉลี่ยที่ได้รับการจัดแจงโดยการชี้แจงให้น้ำหนักที่มากขึ้นกับข้อมูลล่าสุด ดังนั้นจึงเป็นค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนัก แต่ในขณะที่ให้ความสำคัญน้อยกว่ากับข้อมูลราคาในอดีตจะรวมถึงการคำนวณข้อมูลทั้งหมดในชีวิตของเครื่องมือ นอกจากนี้ผู้ใช้สามารถปรับน้ำหนักเพื่อให้น้ำหนักมากขึ้นหรือน้อยกว่ากับราคาวันล่าสุดซึ่งเพิ่มขึ้นเป็นเปอร์เซ็นต์ของมูลค่าวันก่อนหน้า ผลรวมของค่าเปอร์เซ็นต์ทั้งสองจะเพิ่มขึ้นเป็น 100 ตัวอย่างเช่นราคาสุดท้ายของวันอาจมีการกำหนดน้ำหนัก 10 (.10) ซึ่งจะเพิ่มลงในน้ำหนักของวันก่อนหน้า 90 (.90) นี้จะช่วยให้วันสุดท้าย 10 ของน้ำหนักรวม นี่จะเทียบเท่ากับค่าเฉลี่ย 20 วันโดยให้ราคาวันสุดท้ายมีค่าน้อยกว่า 5 (.05) กราฟแสดงดัชนี Nasdaq Composite จากสัปดาห์แรกในเดือนสิงหาคม 2543 ถึงวันที่ 1 มิถุนายน พ. ศ. 2544 ตามที่เห็นได้ชัด EMA ซึ่งในกรณีนี้ใช้ข้อมูลราคาปิดที่ ระยะเวลาเก้าวันมีสัญญาณขายที่ชัดเจนในวันที่ 8 กันยายน (มีเครื่องหมายลูกศรลงสีดำ) นี่เป็นวันที่ดัชนีทะลุแนว 4,000 จุด ลูกศรสีดำที่สองแสดงอีกขาลงที่ช่างเทคนิคกำลังคาดหวัง Nasdaq ไม่สามารถสร้างปริมาณและดอกเบี้ยได้เพียงพอจากนักลงทุนรายย่อยเพื่อทำลายเครื่องหมาย 3,000 จากนั้นก็พุ่งตัวลงสู่จุดต่ำสุดที่ 1619.58 ในวันที่ 4 เม. ย. แนวโน้มการขึ้นลงของวันที่ 12 เมษายนจะมีเครื่องหมายลูกศร ดัชนีปิดที่ 1,961.46 จุดและนักเทคนิคเริ่มเห็นผู้จัดการกองทุนสถาบันเริ่มที่จะรับข้อเสนอพิเศษบางอย่างเช่น Cisco, Microsoft และปัญหาด้านพลังงานบางส่วน (อ่านบทความที่เกี่ยวข้องของเรา: การย้ายซองจดหมายโดยเฉลี่ย: การปรับแต่งเครื่องมือการเทรดยอดนิยมและการเด้งระดับเฉลี่ยที่เคลื่อนที่) เบต้าเป็นตัวชี้วัดความผันผวนหรือความเสี่ยงอย่างเป็นระบบของการรักษาความปลอดภัยหรือพอร์ตโฟลิโอเมื่อเทียบกับตลาดโดยรวม ประเภทของภาษีที่เรียกเก็บจากเงินทุนที่เกิดจากบุคคลและ บริษัท กำไรจากการลงทุนเป็นผลกำไรที่นักลงทุนลงทุน คำสั่งซื้อความปลอดภัยที่ต่ำกว่าหรือต่ำกว่าราคาที่ระบุ คำสั่งซื้อวงเงินอนุญาตให้ผู้ค้าและนักลงทุนระบุ กฎสรรพากรภายใน (Internal Internal Revenue Service หรือ IRS) ที่อนุญาตให้มีการถอนเงินที่ปลอดจากบัญชี IRA กฎกำหนดให้ การขายหุ้นครั้งแรกโดย บริษัท เอกชนต่อสาธารณชน การเสนอขายหุ้นหรือไอพีโอมักจะออกโดย บริษัท ขนาดเล็กที่มีอายุน้อยกว่าที่แสวงหา อัตราส่วนหนี้สิน DebtEquity Ratio คืออัตราส่วนหนี้สินที่ใช้ในการวัดแรงจูงใจทางการเงินของ บริษัท หรืออัตราส่วนหนี้สินที่ใช้ในการวัดบุคคลการสำรวจความผันผวนตามค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักเป็นส่วนใหญ่เป็นมาตรการวัดความเสี่ยงที่พบบ่อยที่สุด แต่มีหลายรสชาติ ในบทความก่อนหน้านี้เราได้แสดงวิธีการคำนวณความผันผวนทางประวัติศาสตร์ที่เรียบง่าย เราใช้ข้อมูลราคาหุ้นที่เกิดขึ้นจริงของ Google เพื่อคำนวณความผันผวนรายวันตามข้อมูลหุ้นภายใน 30 วัน ในบทความนี้เราจะปรับปรุงความผันผวนที่เรียบง่ายและหารือเกี่ยวกับค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบทวีคูณ (EWMA) Historical Vs ความผันแปรเบื้องต้นก่อนอื่นให้วางเมตริกนี้ไว้ในมุมมองเล็กน้อย มีสองแนวทางที่กว้าง: ความผันผวนในอดีตและโดยนัย (หรือโดยนัย) วิธีการทางประวัติศาสตร์สมมติว่าอดีตเป็นคำนำที่เราวัดประวัติศาสตร์ด้วยความหวังว่าจะเป็นการคาดการณ์ ในทางตรงกันข้ามความผันผวนโดยนัยจะละเลยประวัติความเป็นมาที่จะแก้ปัญหาให้กับความผันผวนโดยนัยตามราคาในตลาด หวังว่าตลาดจะรู้ได้ดีที่สุดและราคาในตลาดมีแม้กระทั่งโดยนัยประมาณการความผันผวน ถ้าเรามุ่งเน้นไปที่สามวิธีทางประวัติศาสตร์ (ด้านซ้ายด้านบน) พวกเขามีสองขั้นตอนที่เหมือนกัน: คำนวณชุดของผลตอบแทนเป็นระยะ ๆ ใช้สูตรการถ่วงน้ำหนักก่อนอื่นเรา คำนวณผลตอบแทนเป็นระยะ ๆ โดยทั่วไปแล้วผลตอบแทนรายวันจะได้รับผลตอบแทนแต่ละรายการในแง่บวก สำหรับแต่ละวันเราจะบันทึกล็อกอัตราส่วนราคาหุ้น (เช่นราคาในปัจจุบันหารด้วยราคาเมื่อวานนี้เป็นต้น) นี่เป็นการสร้างผลตอบแทนรายวันจาก u i to u i-m ขึ้นอยู่กับจำนวนวัน (m วัน) ที่เราวัด ที่ทำให้เราก้าวไปสู่ขั้นตอนที่สอง: นี่คือแนวทางที่แตกต่างกันสามวิธี ในบทความก่อนหน้า (ใช้ความผันผวนเพื่อวัดความเสี่ยงในอนาคต) เราพบว่าภายใต้สอง simplifications ยอมรับความแปรปรวนง่ายคือค่าเฉลี่ยของผลตอบแทนที่เป็นกำลังสอง: ขอให้สังเกตว่าผลรวมนี้แต่ละผลตอบแทนเป็นระยะจากนั้นแบ่งทั้งหมดโดย จำนวนวันหรือสังเกตการณ์ (ม.) ดังนั้นจริงๆมันเป็นเพียงเฉลี่ยของผลตอบแทนเป็นระยะ ๆ squared ใส่อีกวิธีหนึ่งแต่ละยกกำลังสองจะได้รับน้ำหนักเท่ากัน ดังนั้นถ้า alpha (a) เป็นปัจจัยการถ่วงน้ำหนัก (โดยเฉพาะ 1m) ความแปรปรวนแบบง่ายๆมีลักษณะดังนี้: EWMA ช่วยเพิ่มความแปรปรวนอย่างง่ายจุดอ่อนของวิธีนี้คือผลตอบแทนทั้งหมดจะมีน้ำหนักเท่ากัน การกลับมาเมื่อวาน (ล่าสุด) ไม่มีอิทธิพลต่อความแปรปรวนมากกว่าผลตอบแทนของเดือนที่ผ่านมา ปัญหานี้ได้รับการแก้ไขโดยใช้ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบทวีคูณ (EWMA) ซึ่งผลตอบแทนที่มากขึ้นล่าสุดมีน้ำหนักมากขึ้นกับความแปรปรวน ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบเลขยกกำลัง (EWMA) แนะนำ lambda ซึ่งเรียกว่าพารามิเตอร์การให้ราบเรียบ แลมบ์ดาต้องมีค่าน้อยกว่าหนึ่ง ภายใต้เงื่อนไขดังกล่าวแทนที่จะใช้น้ำหนักที่เท่ากันผลตอบแทนที่ได้รับจะเพิ่มขึ้นตามตัวคูณดังนี้ตัวอย่างเช่น RiskMetrics TM ซึ่งเป็น บริษัท บริหารความเสี่ยงทางการเงินมีแนวโน้มที่จะใช้แลมบ์ดาเท่ากับ 0.94 หรือ 94 ในกรณีนี้เป็นครั้งแรก (1-0.94) (. 94) 0 6. ผลตอบแทนที่ได้จะเป็นตัวเลข lambda-multiple ของน้ำหนักก่อนหน้าในกรณีนี้ 6 คูณด้วย 94 5.64 และสามวันก่อนหน้ามีน้ำหนักเท่ากับ (1-0.94) (0.94) 2 5.30 นั่นคือความหมายของเลขยกกำลังใน EWMA: แต่ละน้ำหนักเป็นตัวคูณคงที่ (เช่น lambda ซึ่งต้องน้อยกว่าหนึ่ง) ของน้ำหนักก่อนหน้า เพื่อให้แน่ใจว่ามีความแปรปรวนที่ถ่วงน้ำหนักหรือลำเอียงไปยังข้อมูลล่าสุด (หากต้องการเรียนรู้เพิ่มเติมโปรดดูที่แผ่นงาน Excel สำหรับความผันผวนของ Google) ความแตกต่างระหว่างความผันผวนเพียงอย่างเดียวกับ EWMA สำหรับ Google จะแสดงไว้ด้านล่าง ความผันผวนอย่างง่ายมีผลต่อการกลับคืนเป็นระยะ ๆ ทุกๆ 0.196 ตามที่แสดงไว้ในคอลัมน์ O (เรามีข้อมูลราคาหุ้นย้อนหลังเป็นเวลา 2 ปีนั่นคือผลตอบแทน 509 วันและ 1509 0.196) แต่สังเกตว่าคอลัมน์ P กำหนดน้ำหนัก 6, 5.64 แล้ว 5.3 และอื่น ๆ Thats ความแตกต่างระหว่างความแปรปรวนง่ายและ EWMA โปรดจำไว้ว่า: หลังจากที่เราสรุปชุดข้อมูลทั้งหมด (ในคอลัมน์ Q) เรามีความแปรปรวนซึ่งเป็นค่าสแควร์ของส่วนเบี่ยงเบนมาตรฐาน ถ้าเราต้องการความผันผวนเราต้องจำไว้ว่าให้ใช้รากที่สองของความแปรปรวนนั้น ความแตกต่างของความแปรปรวนรายวันระหว่างค่าความแปรปรวนและ EWMA ในกรณีของ Googles มีความหมาย: ความแปรปรวนง่ายทำให้เรามีความผันผวนรายวันอยู่ที่ 2.4 แต่ EWMA มีความผันผวนรายวันเพียง 1.4 (ดูสเปรดชีตเพื่อดูรายละเอียด) เห็นได้ชัดว่าความผันผวนของ Googles ตกลงไปเมื่อไม่นานมานี้ดังนั้นความแปรปรวนที่เรียบง่ายอาจเป็นจำนวนเทียมสูง ความแปรปรวนวันนี้เป็นฟังก์ชันของความแตกต่างของวัน Pior คุณจะสังเกตเห็นว่าเราจำเป็นต้องคำนวณชุดน้ำหนักลดลงอย่างมาก เราจะไม่ใช้คณิตศาสตร์ที่นี่ แต่คุณลักษณะที่ดีที่สุดของ EWMA คือชุดผลิตภัณฑ์ทั้งหมดสามารถลดสูตร recursive ได้อย่างง่ายดาย: Recursive หมายถึงการอ้างอิงความแปรปรวนในปัจจุบัน (คือฟังก์ชันของความแปรปรวนในวันก่อนหน้า) คุณสามารถค้นหาสูตรนี้ในสเปรดชีตยังและจะก่อให้เกิดผลแน่นอนเช่นเดียวกับการคำนวณตัวหนังสือมันบอกว่า: แปรปรวนในปัจจุบัน (ภายใต้ EWMA) เท่ากับแปรปรวนเมื่อวาน (ถ่วงน้ำหนักด้วยแลมบ์ดา) บวกเมื่อวานกลับมายกกำลังสอง (ชั่งน้ำหนักโดยแลมบ์ดาลบหนึ่ง) แจ้งให้เราทราบว่าเรากำลังเพิ่มคำสองคำลงท้ายด้วยกันอย่างไร: ความแปรปรวนที่ถ่วงน้ำหนักในวันอังคารและเมื่อวานถ่วงน้ำหนัก แม้กระนั้นแลมบ์ดาก็คือพารามิเตอร์ที่ราบเรียบของเรา แลมบ์ดาที่สูงขึ้น (เช่น RiskMetrics 94) บ่งชี้การสลายตัวช้าลงในซีรีย์ - ในแง่สัมพัทธ์เราจะมีจุดข้อมูลมากขึ้นในซีรีส์และพวกเขาจะลดลงอย่างช้าๆ ในทางกลับกันถ้าเราลดแลมบ์ดาเราจะบ่งชี้ว่าการสลายตัวที่สูงขึ้น: น้ำหนักจะลดลงอย่างรวดเร็วและเป็นผลโดยตรงจากการผุกร่อนที่รวดเร็วใช้จุดข้อมูลน้อยลง (ในสเปรดชีตแลมบ์ดาเป็นอินพุตดังนั้นคุณจึงสามารถทดสอบความไวได้) ความผันผวนโดยสรุปคือส่วนเบี่ยงเบนมาตรฐานของหุ้นและความเสี่ยงที่พบมากที่สุด นอกจากนี้ยังเป็นรากที่สองของความแปรปรวน เราสามารถวัดความแปรปรวนในอดีตหรือโดยนัย (ความผันผวนโดยนัย) เมื่อวัดในอดีตวิธีที่ง่ายที่สุดคือความแปรปรวนที่เรียบง่าย แต่ความอ่อนแอกับความแปรปรวนที่เรียบง่ายคือผลตอบแทนทั้งหมดจะมีน้ำหนักเท่ากัน ดังนั้นเราจึงต้องเผชิญกับข้อเสียแบบคลาสสิก: เราต้องการข้อมูลมากขึ้น แต่ข้อมูลที่เรามีมากขึ้นการคำนวณของเราจะเจือจางด้วยข้อมูลที่อยู่ไกล (ไม่เกี่ยวข้อง) ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักที่ถ่วงน้ำหนัก (EWMA) ช่วยเพิ่มความแปรปรวนอย่างง่ายโดยกำหนดน้ำหนักให้กับผลตอบแทนเป็นงวด เมื่อทำเช่นนี้เราสามารถใช้ตัวอย่างขนาดใหญ่ แต่ยังให้น้ำหนักมากขึ้นกับผลตอบแทนล่าสุด (หากต้องการดูบทแนะนำเกี่ยวกับภาพยนตร์เกี่ยวกับหัวข้อนี้ไปที่ Bionic Turtle) เบต้าเป็นตัวชี้วัดความผันผวนหรือความเสี่ยงอย่างเป็นระบบของการรักษาความปลอดภัยหรือผลงานเมื่อเปรียบเทียบกับตลาดโดยรวม ประเภทของภาษีที่เรียกเก็บจากเงินทุนที่เกิดจากบุคคลและ บริษัท กำไรจากการลงทุนเป็นผลกำไรที่นักลงทุนลงทุน คำสั่งซื้อความปลอดภัยที่ต่ำกว่าหรือต่ำกว่าราคาที่ระบุ คำสั่งซื้อวงเงินอนุญาตให้ผู้ค้าและนักลงทุนระบุ กฎสรรพากรภายใน (Internal Internal Revenue Service หรือ IRS) ที่อนุญาตให้มีการถอนเงินที่ปลอดจากบัญชี IRA กฎกำหนดให้ การขายหุ้นครั้งแรกโดย บริษัท เอกชนต่อสาธารณชน การเสนอขายหุ้นหรือไอพีโอมักจะออกโดย บริษัท ขนาดเล็กที่มีอายุน้อยกว่าที่แสวงหา อัตราส่วนหนี้สิน DebtEquity Ratio คืออัตราส่วนหนี้สินที่ใช้ในการวัดอัตราส่วนหนี้สินของ บริษัท หรืออัตราส่วนหนี้สินที่ใช้ในการวัดแต่ละบุคคล

Comments